
Dr. A. Taghinezhad18.66Database System Concepts - 7th Edition

Multiversion Concurrency Control

Dr. A. Taghinezhad18.67Database System Concepts - 7th Edition

Multiversion Schemes

▪ Multiversion schemes keep old versions of data item to increase

concurrency. Several variants:

• Multiversion Timestamp Ordering

• Multiversion Two-Phase Locking

• Snapshot isolation

▪ Key ideas:

• Each successful write results in the creation of a new

version of the data item written.

• Use timestamps to label versions.

• When a read(Q) operation is issued, select an appropriate

version of Q based on the timestamp of the transaction

issuing the read request, and return the value of the

selected version.

▪ reads never have to wait as an appropriate version is returned

immediately.

Dr. A. Taghinezhad18.68Database System Concepts - 7th Edition

Multiversion Timestamp Ordering

▪ Each data item Q has a sequence of versions <Q1,

Q2,...., Qm>. Each version Qk contains three data

fields:

• Content -- the value of version Qk.

• W-timestamp(Qk) -- timestamp of the transaction

that created (wrote) version Qk

• R-timestamp(Qk) -- largest timestamp of a

transaction that successfully read version Qk

Dr. A. Taghinezhad18.69Database System Concepts - 7th Edition

Multiversion Timestamp Ordering (Cont)

▪ Suppose that transaction Ti issues a read(Q) or write(Q) operation.

▪ Let Qk denote the version of Q whose write timestamp is the largest

write timestamp less than or equal to TS(Ti).

1. If transaction Ti issues a read(Q), then

▪ the value returned is the content of version Qk

▪ If R-timestamp(Qk) < TS(Ti), set R-timestamp(Qk) = TS(Ti),

2. If transaction Ti issues a write(Q)

1. if TS(Ti) < R-timestamp(Qk), then transaction Ti is rolled back.

2. if TS(Ti) = W-timestamp(Qk), the contents of Qk are overwritten

3. Otherwise, a new version Qi of Q is created

• W-timestamp(Qi) and R-timestamp(Qi) are initialized to TS(Ti).

Dr. A. Taghinezhad18.70Database System Concepts - 7th Edition

Multiversion Timestamp Ordering (Cont)

▪ Observations

• Reads always succeed

• A write by Ti is rejected if some other transaction

Tj that (in the serialization order defined by the

timestamp values) should read Ti's write, has

already read a version created by a transaction

older than Ti.

▪ Protocol guarantees serializability

Dr. A. Taghinezhad18.71Database System Concepts - 7th Edition

Multiversion Two-Phase Locking

▪ Differentiates between read-only transactions and update transactions

▪ Update transactions acquire read and write locks, and hold all locks up to the

end of the transaction. That is, update transactions follow rigorous two-

phase locking.

• Read of a data item returns the latest version of the item

• The first write of Q by Ti results in the creation of a new version Qi of the data

item Q written

▪ W-timestamp(Qi) set to ∞ initially to not allow other writes

• When update transaction Ti completes, commit processing occurs:

▪ Value ts-counter stored in the database is used to assign timestamps

• ts-counter is locked in two-phase manner

▪ Set W-timestamp(Qi) = (ts-counter + 1) for all versions Qi that it creates

▪ ts-counter = ts-counter + 1

▪ Thereby, those transactions that start before 𝑻𝒊 commits will see the value

before the updates by 𝑇𝑖 .

Dr. A. Taghinezhad18.72Database System Concepts - 7th Edition

Multiversion Two-Phase Locking (Cont.)

▪ Read-only transactions

• are assigned a timestamp = ts-counter when they

start execution

• follow the multiversion timestamp-ordering protocol for

performing reads

▪ Do not obtain any locks

▪ Read-only transactions that start after Ti increments ts-

counter will see the values updated by Ti.

▪ Read-only transactions that start before Ti increments the

ts-counter will see the value before the updates by Ti.

▪ Only serializable schedules are produced.

Dr. A. Taghinezhad18.73Database System Concepts - 7th Edition

MVCC: Implementation Issues

▪ Creation of multiple versions increases storage overhead

• Extra tuples

• Extra space in each tuple for storing version

information

▪ Versions can, however, be garbage collected

• E.g., if Q has two versions Q5 and Q9, and the oldest

active transaction has timestamp > 9, than Q5 will

never be required again

▪ Issues with

• primary key and foreign key constraint checking

• Indexing of records with multiple versions

See textbook for details

Dr. A. Taghinezhad18.74Database System Concepts - 7th Edition

Snapshot Isolation

▪ Motivation: Decision support queries that read large amounts of data
have concurrency conflicts with OLTP transactions that update a few
rows

• Poor performance results

▪ Solution 1: Use multiversion 2-phase locking

• Give logical “snapshot” of database state to read only transaction

▪ Reads performed on snapshot

• Update (read-write) transactions use normal locking

• Works well, but how does system know a transaction is read only?

▪ Solution 2 (partial): Give snapshot of database state to every
transaction

• Reads performed on snapshot

• Use 2-phase locking on updated data items

• Problem: variety of anomalies such as lost update can result

• Better solution: snapshot isolation level (next slide)

Dr. A. Taghinezhad18.75Database System Concepts - 7th Edition

Snapshot Isolation

▪ A transaction T1 executing with Snapshot Isolation

• Takes snapshot of committed data at start

• Always reads/modifies data in its own

snapshot

• Updates of concurrent transactions are not

visible to T1

• Writes of T1 complete when it commits

• First-committer-wins rule:

 Commits only if no other concurrent

transaction has already written data that T1

intends to write.

T1 T2 T3

W(Y := 1)

Commit

Start

R(X) → 0

R(Y)→ 1

W(X:=2)

W(Z:=3)

Commit

R(Z) → 0

R(Y) → 1

W(X:=3)

Commit-Req

Abort

Concurrent updates not visible

Own updates are visible

Not first-committer of X

Serialization error, T2 is rolled back

Dr. A. Taghinezhad18.76Database System Concepts - 7th Edition

Snapshot Read

▪ Concurrent updates invisible to snapshot read

Dr. A. Taghinezhad18.77Database System Concepts - 7th Edition

Snapshot Write: First Committer Wins

• Variant: “First-updater-wins”

Check for concurrent updates when write occurs by locking item

 But lock should be held till all concurrent transactions have
finished

(Oracle uses this plus some extra features)

Differs only in when abort occurs, otherwise equivalent

Dr. A. Taghinezhad18.78Database System Concepts - 7th Edition

Benefits of SI

▪ Reads are never blocked,

• and also don’t block other txns activities

▪ Performance similar to Read Committed

▪ Avoids several anomalies

• No dirty read, i.e. no read of uncommitted data

• No lost update

▪ I.e., update made by a transaction is overwritten by another
transaction that did not see the update)

• No non-repeatable read

▪ I.e., if read is executed again, it will see the same value

▪ Problems with SI

• SI does not always give serializable executions

▪ Serializable: among two concurrent txns, one sees the effects of
the other

▪ In SI: neither sees the effects of the other

• Result: Integrity constraints can be violated

Dr. A. Taghinezhad18.79Database System Concepts - 7th Edition

Snapshot Isolation

▪ Example of problem with SI

• Initially A = 3 and B = 17

▪ Serial execution: A = ??, B = ??

▪ if both transactions start at the same time,

with snapshot isolation: A = ?? , B = ??

▪ Called skew write

▪ Skew also occurs with inserts

• E.g:

▪ Find max order number among all orders

▪ Create a new order with order number = previous max + 1

▪ Two transaction can both create order with same number

• Is an example of phantom phenomenon

